<

欧美极品视频一区二区三区-中文字幕熟女有码一区二区三区-欲色精品一区二区三区96-佐山爱一区二区在线中文字幕

15601689581
當(dāng)前位置:主頁(yè) > 產(chǎn)品展示 > 專用實(shí)驗(yàn)設(shè)備 > 光電測(cè)試系統(tǒng) > 時(shí)域熱反射測(cè)量系統(tǒng) (TDTR 測(cè)試系統(tǒng))

時(shí)域熱反射測(cè)量系統(tǒng) (TDTR 測(cè)試系統(tǒng))

簡(jiǎn)要描述:我司新推出的時(shí)域熱反射測(cè)量系統(tǒng)可用于測(cè)量金屬薄膜、塊體或液體的熱導(dǎo)率、界面熱阻等多項(xiàng)熱物性參數(shù),薄膜測(cè)量厚度可達(dá)納米量級(jí)!在微納結(jié)構(gòu)新材料的研發(fā)與分析等方面得以越來(lái)越廣泛的應(yīng)用。 時(shí)域熱反射測(cè)量系統(tǒng) (TDTR 測(cè)試系統(tǒng))

  • 產(chǎn)品型號(hào):
  • 廠商性質(zhì):代理商
  • 更新時(shí)間:2021-09-10
  • 訪  問(wèn)  量:3287
產(chǎn)品目錄

Product catalog

相關(guān)文章

Related articles

詳細(xì)介紹
品牌其他品牌產(chǎn)地類別進(jìn)口
應(yīng)用領(lǐng)域醫(yī)療衛(wèi)生,生物產(chǎn)業(yè),電子厚度樣品測(cè)量nm級(jí)

時(shí)域熱反射測(cè)量系統(tǒng) (TDTR 測(cè)試系統(tǒng))飛秒激光時(shí)域熱反射測(cè)量技術(shù),即Time-domain Thermoreflectance, TDTR 是一種基于飛秒超快激光抽運(yùn)探測(cè)(pump-probe)技術(shù)的導(dǎo)熱測(cè)量技術(shù)。相比于其他導(dǎo)熱測(cè)量技術(shù),目前TDTR技術(shù)因其可以測(cè)量納米薄膜熱導(dǎo)率和界面熱阻以及非接觸式測(cè)量特性而具有*優(yōu)勢(shì)。

 

我司新推出的時(shí)域熱反射測(cè)量系統(tǒng)可用于測(cè)量金屬薄膜、塊體或液體的熱導(dǎo)率、界面熱阻等多項(xiàng)熱物性參數(shù),薄膜測(cè)量厚度可達(dá)納米量級(jí)!在微納結(jié)構(gòu)新材料的研發(fā)與分析等方面得以越來(lái)越廣泛的應(yīng)用。   

 

系統(tǒng)通過(guò)利用飛秒激光照射樣品表層金屬薄膜,令薄膜吸收能量并將其轉(zhuǎn)化為熱能, 從而傳導(dǎo)給樣品,并隨時(shí)間尺度逐漸向樣品傳遞。金屬薄膜表面溫度隨時(shí)間回落,從而影響到其反射率。屆時(shí)再通過(guò)測(cè)量另一束探測(cè)激光的反射強(qiáng)度曲線,通過(guò)后續(xù)一系列的解調(diào)分析,即可得到金屬薄膜溫度隨時(shí)間的變化,進(jìn)而獲得被測(cè)樣品的導(dǎo)熱特性和相關(guān)熱物性參數(shù)等。

 

時(shí)域熱反射測(cè)量系統(tǒng) (TDTR 測(cè)試系統(tǒng))產(chǎn)品特點(diǎn):

超快動(dòng)態(tài)測(cè)量過(guò)程,nm級(jí)厚度樣品測(cè)量

各項(xiàng)異性熱導(dǎo)率測(cè)量

納米材料界面熱阻材料(石墨烯合金等界面熱阻測(cè)量)

高溫高壓外場(chǎng)測(cè)量(Gpa 高壓環(huán)境  1000℃ 外場(chǎng)環(huán)境兼容)

 

 

本系統(tǒng)采用了長(zhǎng)行程線性位移臺(tái),可以實(shí)現(xiàn)較高時(shí)間分辨率的熱響應(yīng)測(cè)量;

雙波長(zhǎng)激光分別進(jìn)行泵浦和探測(cè),降低了加熱和探測(cè)過(guò)程之間的干擾;

調(diào)制和鎖相的使用進(jìn)一步保證了微小熱響應(yīng)信號(hào)的捕捉和測(cè)量;

ccd顯微可視技術(shù)則能夠精確控制具有微觀結(jié)構(gòu)樣品的測(cè)量。

 

關(guān)鍵核心技術(shù):

高分辨率時(shí)域熱反射技術(shù)

雙波長(zhǎng)抽運(yùn)探測(cè)技術(shù)

調(diào)制鎖相放大技術(shù)

光路共享CCD顯微可視技術(shù)

高集成度分體式模塊化設(shè)計(jì)

高靈活度樣品位設(shè)計(jì)

 

可測(cè)材料:

塊體材料
薄膜材料

 

可測(cè)參數(shù):

熱導(dǎo)率

熱擴(kuò)散率

吸熱系數(shù)

界面熱阻

 

應(yīng)用:

材料分析

薄膜的熱物性參數(shù)測(cè)量

 

系統(tǒng)規(guī)格:

熱導(dǎo)率測(cè)量范圍 0.1~2,000 W·m-1·K-1

熱擴(kuò)散率測(cè)量范圍0.05~1,000 mm2·s-1

可測(cè)薄膜厚度     >10 nm

吸熱系數(shù) 500~50,000 J·m-2·K-1·s-0.5

 

部分發(fā)表論文列表:

1.       Fangyuan Sun#, Teng Zhang#, Matthew M. Jobbins, Zhi Guo, Xueqiang Zhang, Zhongli Zheng, Dawei Tang, Sylwia Ptasinska, Tengfei Luo*, Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces, Advanced Materials, 2014, 26(35): 6093-6099 (SCI影響因子25.809,JCR 1區(qū),封面文章,科學(xué)網(wǎng)、中科院網(wǎng)報(bào)道文章)

2.       Kun Zheng#, Fangyuan Sun#, Jie Zhu*, Yongmei Ma*, Xiaobo Li, Dawei Tang, Fosong Wang, Xiaojia Wang, Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer, ACS Nano, 2016, 10(8): 7792-7798 (SCI影響因子13.903,JCR 1區(qū),共同第一作者)

3.       Guo Chang, Fangyuan Sun*, Luhua Wang, Zhanxun Che, Xitao Wang, Jinguo Wang, Moon J. Kim, Hailong Zhang*, Regulated interfacial thermal conductance between cu and diamond by a TiC interlayer for thermal management applications, ACS Applied Materials & Interfaces, 2019, 11(29): 26507-26517 (SCI影響因子8.456,JCR 1區(qū))

4.       Jiaxin Lu#, Kunpeng Yuan#, Fangyuan Sun*, Kun Zheng*, Zhongyin Zhang, Jie Zhu, Xinwei Wang, Xiaoliang Zhang, Yafang Zhuang, Yongmei Ma*, Xinyu Cao, Jingnan Zhang, Dawei Tang, Self-assembled monolayer for polymer-semiconductor interface with improved interfacial thermal management, ACS Applied Materials & Interfaces, 2019, 10.1021/acsami.9b12006 (SCI影響因子8.456,JCR 1區(qū))

5.       Xinwei Wang#, Zhe Chen#, Fangyuan Sun*, Hang Zhang, Yuyan Jiang, Dawei Tang*, Analysis of simplified heat transfer models for thermal property determination of nano-film by TDTR method, Measurement Science and Technology, 2018(29): 035902 (SCI影響因子1.861,JCR 2區(qū))

6.       Fangyuan Sun#,*, Xinwei Wang#, Ming Yang, Zhe Chen, Hang Zhang*, Dawei Tang*, Simultaneous measurement of thermal conductivity and speci?c heat in a single TDTR experiment, International Journal of Thermophysics, 2018, 39(1): 5 (SCI影響因子0.853,JCR 4區(qū))

7.       孫方遠(yuǎn), 祝捷*, 唐大偉, 飛秒激光抽運(yùn)探測(cè)方法測(cè)量液體熱導(dǎo)率, 科學(xué)通報(bào), 2015, 60(14): 1320-1327 (中國(guó)工程熱物理學(xué)會(huì)傳熱傳質(zhì)會(huì)議優(yōu)秀論文)

8.       張航#, 王新偉#, 張中印, 陳哲, 孫方遠(yuǎn)*, 唐大偉*, 基于TDTR方法的碳化硅低溫導(dǎo)熱性能實(shí)驗(yàn)研究, 工程熱物理學(xué)報(bào), 2017, 38(7): 1415-1421 (EI索引)

9.       Xinwei Wang, Zhongyin Zhang, Fangyuan Sun*, Xue Xiong, Zhe Chen, Hang Zhang, Yongfu Liang, Yuyan Jiang, Dawei Tang*, The influence of related parameters to thermal conductivity determination via time-domain thermoreflectance method under high pressure, International Heat Transfer Conference 16, 2018, 24: 8881-8889

10.    Xinwei Wang, Meiling Zhou, Weidong Xu, Zhongyin Zhang, Fangyuan Sun*, Thermal conductivity measurements of Al2O3/water nanofluids using time-domain thermoreflectance method and hot wire method, International Heat Transfer Conference 16, 2018, 24: 8711-8720

11.    Kun Zheng, Fangyuan Sun, Xia Tian, Jie Zhu*, Yongmei Ma*, Dawei Tang, Fosong Wang, Tuning the interfacial thermal conductance between polystyrene and sapphire by controlling the interfacial adhesion, ACS Applied Materials & Interfaces, 2015, 7(42): 23644-23649 (SCI影響因子8.456,JCR 1區(qū))

12.    Teng Zhang, Ashley R. Gans-Forrest, Eungkyu Lee, Xueqiang Zhang, Chen Qu, Yunsong Pang, Fangyuan Sun, Tengfei Luo*, Role of hydrogen bonds in thermal transport across hard/soft material interfaces, ACS Applied Materials & Interfaces, 2016, 8(48): 33326-33334 (SCI影響因子8.456,JCR 1區(qū))

13.    Guo Chang, Fangyuan Sun, Jialiang Duan, Zifan Che, Xitao Wang, Jinguo Wang, Moon J Kim, Hailong Zhang*, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Materialia, 2018, 160: 235-246 (SCI影響因子7.293,JCR 1區(qū))

14.    Zhi Guo, Doyun Lee, Yi Liu, Fangyuan Sun, Anna Sliwinski, Haifeng Gao, Peter C. Burns, Libai Huang, Tengfei Luo*, Tuning the thermal conductivity of solar cell polymers through side chain engineering, Physical Chemistry Chemical Physics, 2014, 16(17): 7764-7771 (SCI影響因子3.567,JCR 2區(qū))

15.    Zhi Guo, Amit Verma, Xufei Wu, Fangyuan Sun, Austin Hickman, Takekazu Masui, Akito Kuramata, Masataka Higashiwaki, Debdeep Jena, and Tengfei Luo*, Anisotropic thermal conductivity in single crystal β-gallium oxide, Applied Physics Letters, 2015, 106(11): 111909 (SCI影響因子3.521,JCR 1區(qū))

16.    Zhenbao Li, Yejie Cao, Wen Liu, Yiguang Wang*, Fangyuan Sun, Zhe Chen, Zhongyin Zhang, Enhanced irradiation resistance and thermal conductivity of SiC induced by the addition of carbon under Au2+ ion irradiation, Ceramics International, 2018, 44(7): 8521-8527 (SCI影響因子3.45,JCR 1區(qū))

17.    Xin Jia, Junjun Wei*, Yuechan Kong, Chengming Li, Jinlong Liu, Liangxian Chen, Fangyuan Sun, Xinwei Wang, The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate, Surface and Interface Analysis, 2019, 51(7): 783-790 (SCI影響因子1.319,JCR 4區(qū))

18.    Lidan Zhu, Fangyuan Sun, Jie Zhu*, Dawei Tang*, Yuhua Li, Chaohong Guo, Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method, Chinese Physics Letters, 2012, 29(6): 066301 (SCI影響因子1.066,JCR 3區(qū))

19.    Ming Yang*, Fangyuan Sun, Ruining Wang, Hang Zhang*, Dawei Tang*, Strain modulation of electronic and heat transport properties of bilayer boronitrene, International Journal of Thermophysics, 2017, 38(10): 155 (SCI影響因子0.853,JCR 4區(qū))

20.    朱麗丹, 孫方遠(yuǎn), 祝捷*, 唐大偉*, 飛秒激光抽運(yùn)探測(cè)熱反射法對(duì)金屬納米薄膜超快非平衡傳熱的研究, 物理學(xué)報(bào), 2012, 61(13): 134402 (SCI影響因子0.644,JCR 4區(qū))

21.    Dong Yu, Xuegong Hu*, Chaohong Guo, Dawei Tang, Fangyuan Sun, Linghong Hu, Fei Gao, Tao Zhao, Experimental investigation on fluid flow in an inclined open rectangular microgrooves heat sink with micro-PIV, ASME 2013 Heat Transfer Summer Conference, 2013: V004T15A002 (SCI索引)

22.    Juan Wen*, Dawei Tang, Zhicheng Wang, Jing Zhang, Yanjun Li, Fangyuan Sun, Numerical simulation of flow and heat transfer of a direct air-cooled condenser cell in a power plant, ASME 2013 Heat Transfer Summer Conference, 2013: V001T03A035 (SCI索引)

23.    朱麗丹, 孫方遠(yuǎn), 祝捷, 唐大偉*, 飛秒激光抽運(yùn)-探測(cè)法對(duì)金納米薄膜非平衡傳熱的研究, 中國(guó)激光, 2012, 39(5): 0507001 (EI索引)

24.    陳哲, 孫方遠(yuǎn), 唐大偉*, 鋁傳感層蒸鍍速率對(duì)飛秒激光抽運(yùn)探測(cè)熱反射方法測(cè)量熱導(dǎo)率影響的研究, 熱科學(xué)與技術(shù), 2018, 17(4): 290-295

25.    石宏開(kāi), 王新偉, 鄭利兵*, 孫方遠(yuǎn), 劉珠明, 基于熱反射法的微納結(jié)構(gòu)熱掃描技術(shù)研究, 熱科學(xué)與技術(shù), 2019, 18(2): 94-99

26.    Zhongyin Zhang, Xinwei Wang, Kunpeng Yuan, Fangyuan Sun, Dawei Tang*, Thermal conductance measurement of Al-SiC interface at 4-300K using time-domain thermoreflectance technique, International Heat Transfer Conference 16, 2018, 24: 8826-8833

27.    Kun Zheng, Jiaxin Lu, Yafang Zhuang, Fangyuan Sun, Jie Zhu, Yongmei Ma, Dawei Tang, Tuning the thermal conductance of polymer and sapphire interface, International Heat Transfer Conference 16, 2018, 8: 2599-2605

 

 

 

產(chǎn)品咨詢

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說(shuō)明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

昊量微信在線客服

昊量微信在線客服

版權(quán)所有 © 2024上海昊量光電設(shè)備有限公司 備案號(hào):滬ICP備08102787號(hào)-3 技術(shù)支持:化工儀器網(wǎng) 管理登陸 Sitemap.xml