欧美极品视频一区二区三区-中文字幕熟女有码一区二区三区-欲色精品一区二区三区96-佐山爱一区二区在线中文字幕

15601689581
當前位置:主頁 > 技術(shù)文章 > 腦磁圖(MEG)新型技術(shù)及功能特點-多通道光泵磁力計便攜平臺

腦磁圖(MEG)新型技術(shù)及功能特點-多通道光泵磁力計便攜平臺

更新時間:2024-06-20 點擊次數(shù):406

腦磁圖(MEG)新型技術(shù)及功能特點
多通道光泵磁力計便攜平臺


腦磁圖(MEG)發(fā)展背景前景介紹


腦磁圖(MEG)通過評估神經(jīng)電流產(chǎn)生的磁場來測量大腦功能。傳統(tǒng)的MEG使用超導傳感器,這對性能、實用性和部署產(chǎn)生了重大限制;然而,近年來,光泵磁力計optically-pumped-magnetometers(OPMs)的引入使該領域發(fā)生了革命性變化。OPMs可以在沒有低溫的情況下測量MEG信號,從而實現(xiàn)了“OPM-MEG"系統(tǒng)的概念,該系統(tǒng)表面上允許增加靈敏度和分辨率、壽命依從性、自由受試者移動和更低的成本。在這里,我們報告了一種新的OPM-MEG設計,具有小型化和集成的電子控制、高水平的便攜性和改進的傳感器動態(tài)范圍(可以說是現(xiàn)有儀器的zui大限制)。我們表明,與已建立的儀器相比,該系統(tǒng)產(chǎn)生等效的措施;具體而言,當測量任務誘導的beta帶、伽馬帶和誘發(fā)的神經(jīng)電反應時,來自兩個系統(tǒng)的源定位具有高度可比性,時間相關性>0.7在個體水平和>0.9群體中。使用電磁體模,我們通過在背景場中運行系統(tǒng)來證明改進的動態(tài)范圍8nT。我們表明,該系統(tǒng)在自由運動期間(包括坐立范式)收集數(shù)據(jù)是有效的,并且它與同時electroencephalography(EEG-臨床標準)兼容。zui后,我們通過在兩個實驗室之間移動系統(tǒng)來證明可移植性??傮w而言,我們的新系統(tǒng)被證明是OPM-MEG技術(shù)的重要一步,并為下一代功能醫(yī)學成像提供了一個有吸引力的平臺。


腦磁圖(MEG)測量電流通過大腦神經(jīng)元組裝產(chǎn)生的磁場(Cohen 1968)。這些磁場的數(shù)學建模產(chǎn)生三維圖像,顯示electrophysiological活動的空間和時間特征。MEG是研究大腦功能的成熟工具,在神經(jīng)科學和臨床實踐中具有應用(Baillet,2017)。在神經(jīng)科學中,它可用于測量誘發(fā)反應,神經(jīng)振蕩,功能連接和網(wǎng)絡動力學-顯示大腦如何不斷形成和溶解支持認知的網(wǎng)絡。臨床上,MEG zui常用于癲癇,以定位負責癲癇發(fā)作的大腦區(qū)域以及周圍雄辯的皮層(De Tiège et al.,2017)。還有其他潛在的應用,從研究兒童常見疾?。ɡ纾蚤]癥聽覺誘發(fā)反應潛伏期的測量(Matsuzaki等人,2019年))到調(diào)查老年人的神經(jīng)退行性疾病(例如,癡呆癥皮質(zhì)減緩的測量(Gouw等人,2021年))。MEG在空間精度(因為磁場對頭骨的扭曲比EEG測量的電位?。┖挽`敏度(因為EEG更受非神經(jīng)元來源(如肌肉)的人工制品的影響)方面優(yōu)于臨床標準electroencephalography(EEG)(Boto等人,2019年;Goldenholz等人,2009年)


近年來,MEG儀器通過引入光泵磁力計(OPMs)而發(fā)生了革命性的變化。(參見(Brookes等人,2022年;Schofield等人,2023年;Tierney等人,2019年)的評論。)OPMs測量磁場的靈敏度與傳統(tǒng)MEG使用的傳感器相似,但不需要低溫冷卻。它們也可以是微制造的(Schwindt等人,2007年;V. Shah等人,2007年,2020年;V.K.Shah&Wakai,2013年),因此它們小巧輕便。這導致了多種優(yōu)勢。例如,傳感器可以放置在更靠近頭皮表面的位置(與低溫設備相比,不再需要熱絕緣間隙);這顯著提高了信號幅度(Boto等人,2016年,2017年;livanainen等人,2017,2019,2020)理論計算表明,這可以提供的空間分辨率(高于傳統(tǒng)的MEG和EEG)(Nugent等人,2022年;Tierney等人,2022年;Wens,2023年)。陣列可以適應任何頭部形狀-從新生兒到成年人(Corvilain等人,2024年;Feys等人,2023年;Hill等人,2019年;Rier等人,2024年)。適應性還意味著陣列可以設計為優(yōu)化對特定效應(Hill等人,2024年)或大腦區(qū)域(Lin等人,2019年;Tierney,Levy等人,2021年)的敏感性。當傳感器隨著頭部移動時,參與者可以在記錄期間自由移動(假設背景場得到良好控制)(Holmes等,2018,2019,2023; Rea等,2021)。這使得在新任務期間記錄數(shù)據(jù)(Boto等,2018;Rea等,2022)甚至癲癇發(fā)作(Feys等,2023;Hillebrand等,2023)。對不同頭部大小/形狀的適應性加上運動魯棒性(Feys&De Tiège,2024)意味著,像EEG一樣,OPM-MEG系統(tǒng)是可穿戴的。然而,與EEG不同,傳感器不需要與頭部進行電接觸,使得OPM-MEG在患者友好性方面比EEG更實用。


zui后,即使在開發(fā)的早期階段,基于OPM的系統(tǒng)也比傳統(tǒng)的MEG設備更便宜。這些顯著的優(yōu)勢在理論上可能導致OPMMEG成為electrophysiological測量的shou選方法,甚至有可能取代EEG成為某些應用的臨床工具。

 

多通道OPM-MEG系統(tǒng)數(shù)據(jù)采集分析

 

我們zui初的目標是比較兩種不同的OPM-MEG系統(tǒng)。兩者都由64個三軸Quspin QZFM OPM傳感器(QuSpin Inc. Colorado,USA)組成,每個傳感器都能夠在三個正交方向上測量磁場,從而實現(xiàn)192個獨立通道的數(shù)據(jù)收集。傳感器設計已經(jīng)有了很好的記錄(Boto等人,2022;V.Shah等人,2020),這里不再詳細重復;簡而言之,每個傳感器頭都是一個獨立的單元,包括一個87Rb蒸汽電池,一個用于光泵浦的激光器,一個用于電池內(nèi)場控制的板載電磁線圈和兩個用于信號讀出的光電二極管。光束分離器將激光輸出分開,相關光學器件通過電池投射兩個正交光束,以實現(xiàn)三軸場測量。傳感器的中位數(shù)噪聲底限預計~15fT/sqrt(Hz)在3-100 Hz范圍內(nèi)。這比典型的單軸或雙軸OPM的噪聲底略高,因為需要將激光束分開進行三軸測量(Boto et al.,2022)。兩個系統(tǒng)的傳感器安裝在相同的3D打印頭盔中(Cerca Magnetics Limited,Nottingham,UK),確保陣列幾何形狀對于所有測量都是相同的(參見圖1A-插圖)。陣列被放置在一個磁屏蔽室(MSR)中,包括四個金屬層和一個銅層,以分別衰減DC/低頻和高頻磁干擾場(Magnetic Shields Limited,Kent,UK)。MSR墻壁配備了消磁線圈,以減少掃描前的殘余磁化。MSR還配備了矩陣線圈(Holmeset al.,2023)和指紋線圈(Holmeset al.,2019)-兩者都能夠進行主動場控制(Cerca Magnetics Limited,Nottingham,UK)。單個“采集"計算機用于OPM-MEG控制和數(shù)據(jù)采集;該范式(以及相關的時間標記(“觸發(fā)器")描述了向受試者提供刺激的時間)由第二臺“刺激"計算機控制。視覺刺激通過波導投影到位于受試者前方的背投影屏幕上~100 cm呈現(xiàn)。我們使用了Optoma HD39 Darbee投影儀,刷新率為120 Hz。兩個系統(tǒng)的示意圖如圖1C所示。


圖1:OPM-MEG系統(tǒng): A)機架安裝(RM)OPM-MEG系統(tǒng);傳感器頭通過MSR外的電子機架控制。B)集成小型化(IM)OPM-MEG系統(tǒng);受試者佩戴的背包內(nèi)包含所有控制和采集電子設備。系統(tǒng)原理圖——對兩個系統(tǒng)都有效,主要區(qū)別是電子OPM:紅色路徑顯示IM系統(tǒng),藍色顯示RM系統(tǒng)。集成微型系統(tǒng)的電子設備照片。


圖2顯示了我們的RM和IM系統(tǒng)之間的比較結(jié)果。單個主題的結(jié)果顯示(在所有6次運行中平均);第二個主題的等效圖在補充材料中提供。面板A顯示按鈕按下期間的beta調(diào)制。在這兩個系統(tǒng)中,zui大的beta調(diào)制被定位到左側(cè)初級感覺運動皮層(由于右食指的運動),時間過程顯示出明顯的運動誘導beta幅度的減少,如預期的那樣。圖2B顯示了圓刺激呈現(xiàn)期間的伽馬調(diào)制。在這里,zui大的刺激誘導增加在主要視覺區(qū)域,并觀察到刺激呈現(xiàn)期間伽馬幅度的預期增加。圖2C顯示了對面部呈現(xiàn)的誘發(fā)反應。圖像顯示了誘發(fā)反應的空間簽名,其延遲為~170ms,主要在梭形區(qū)域。


圖2:RM和IM系統(tǒng)比較: A)手指運動的β帶反應;在左邊的圖像中,疊加顯示zui大beta調(diào)制的位置,右邊的時間過程顯示beta帶振幅的時間演變。b)對視覺刺激的伽馬反應;圖像顯示伽馬調(diào)制的位置,時間過程顯示伽馬帶振幅的演變。c)對面部呈現(xiàn)的誘發(fā)反應;圖像顯示zui高誘發(fā)功率的位置,時間過程顯示試驗平均誘發(fā)反應。在所有三種情況下,數(shù)據(jù)在6次運行中平均;顯示了兩個系統(tǒng)的圖像,在時間過程圖中,紅色表示RM系統(tǒng),藍色表示IM系統(tǒng),陰影區(qū)域表示運行均方差。


圖3顯示了我們的坐立任務的結(jié)果。圖3A和C圖分別顯示了beta調(diào)制和從初級感覺運動皮層峰值提取的TFS的pseudo-T-statistical圖像。zui大的beta調(diào)制局限于雙側(cè)感覺運動區(qū)域,從手部區(qū)域中間延伸到負責腿部運動的區(qū)域(回想一下,任務涉及站立時手指運動,所以這是可以預料的)。TFS在每次試驗的前4秒顯示出清晰的beta帶不同步,而受試者正在運動。圖3 顯示了傳感器測量的原始磁場數(shù)據(jù)。大多數(shù)傳感器顯示由運動產(chǎn)生的背景場偏移,>1.5 nT這超過了傳感器在開環(huán)模式下運行時的動態(tài)范圍。盡管有這些大的場偏移,傳感器仍保持運行。雖然傳感器在開環(huán)運行時可以進行這些測量,但信號的準確性將受到增益和CAPE誤差的顯著阻礙(Borna et al.,2022)。


圖3:坐立任務:A)任務引起的beta調(diào)制的空間特征。B)通道測量的原始磁場,顯示傳感器穿過a ~2 nT背景場,參與者從坐姿移動到站姿。C)來自感覺運動皮層的TFS,顯示神經(jīng)振蕩的時頻演變。D)任務的再現(xiàn),以展示運動范圍。


并發(fā)OPM-MEG/EEG聯(lián)動對比

圖4:并發(fā)OPM-MEG/EEG: A)戴著EEG帽和OPM-MEG頭盔的參與者。b)在自然頭部運動期間記錄數(shù)據(jù):顯示了實驗中受試者所做的zui大平移和旋轉(zhuǎn)。條代表受試者的平均值;數(shù)據(jù)點顯示每個個體受試者的值。C)和D)分別顯示組平均beta和伽馬效應。在這兩種情況下pseudo-T-statistical圖像和相關的TFS(來自beta的zui小值和伽馬視覺皮層的中心點)在這些圖像中顯示了EEG和MEG。所有數(shù)據(jù)都是在運動的情況下記錄的。


小型化OPM-MEG系統(tǒng)總結(jié)


我們的總體目標是展示一種新的OPM-MEG系統(tǒng),具有集成和小型化的電子設備,并測試其評估人體electrophysiological功能的可行性。我們的主要演示看到新的IM系統(tǒng)在兩個受試者中多次使用,以提供與已建立的OPM-MEG設備的比較,該設備以前已經(jīng)得到廣泛驗證(Boto等人,2022; Rea等人,2022;Rier等人,2023,2024),包括與傳統(tǒng)MEG(Boto等人,2021;Hill等人,2020;Rhodes等人,2023)。兩個系統(tǒng)獲得的結(jié)果顯示出驚人的一致性。源時間在系統(tǒng)之間具有高度可重復性,平均相關性為~0.75對于單個運行,以及>0.9對于同一受試者的多次運行的平均值??傮w而言,這些結(jié)果表明這兩個系統(tǒng)提供了等效的性能。重要的是,這不僅驗證了小型化的電子設備,而且還表明MSR內(nèi)部的這種電子設備(作為背包佩戴)不會在OPM傳感器處產(chǎn)生顯著的磁干擾,這些干擾不能通過均勻場校正(Tierney等人,2021)和波束成形(Brookes等人,2021)等方法在后處理中被拒絕。

 

zui后,從實際角度來看,IM系統(tǒng)表現(xiàn)良好。在之前的OPM中,MEG系統(tǒng)的魯棒性一直是一個關鍵問題,特別是在測量中丟失的通道數(shù)量。在這里,在使用我們的IM系統(tǒng)的32個實驗中,我們丟失了(平均)3±5通道。在我們丟失通道的情況下,原因通常是傳感器頭和帶狀電纜之間的連接。傳感器頭使用卡扣連接,卡在帶狀電纜上,進行電氣連接。這在制造電纜時需要zui小的公差,因為即使是電纜厚度的微小變化也會使卡扣連接器松動,從而導致連接不穩(wěn)定(這也是IM系統(tǒng)中空房間噪音略微增加的可能原因)。這是該系統(tǒng)未來幾代應該改變的事情。盡管有這個小限制,IM系統(tǒng)表現(xiàn)良好。64個Quspin QZFM傳感器的設置時間通常約為三分鐘——這包括加熱蒸汽電池和激光器、用PID控制器鎖定溫度、優(yōu)化所有傳感器參數(shù)、將每個電池內(nèi)的場歸零、校準傳感器和打開閉環(huán)的時間。每個OPM傳感器頭的特性略有不同,這意味著控制參數(shù)必須在每個傳感器的基礎上進行優(yōu)化(就像超導量子干涉設備(SQUID)必須在傳統(tǒng)MEG系統(tǒng)中單獨調(diào)整一樣)。在IM系統(tǒng)中,由于這些參數(shù)是在傳感器啟動時優(yōu)化和設置的,傳感器頭可以輕松更換,而不需要在更換后重新啟動傳感器以外的任何東西。這是運行系統(tǒng)時的一個重要的實際優(yōu)勢,進一步增加了設計的模塊化。

 

這里報告了一種全新的OPM-MEG系統(tǒng)設計,具有小型化和集成的電子控制、高水平的便攜性和顯著改善的動態(tài)范圍。我們已經(jīng)證明,與已建立的儀器相比,這種儀器提供了對刺激的誘導和誘發(fā)神經(jīng)電反應的等效測量,并且它提供了改進的動態(tài)范圍。我們已經(jīng)證明,該系統(tǒng)在參與者運動期間(包括從坐到站的范例)收集數(shù)據(jù)是有效的,并且它與同步EEG記錄兼容。zui后,我們通過在兩個實驗室之間移動系統(tǒng)來證明便攜性。總體而言,我們的新系統(tǒng)代表了OPM-MEG向前邁出的重要一步,并為下一代功能性醫(yī)學成像提供了吸引力的平臺。



關于昊量光電:

上海昊量光電設備有限公司是光電產(chǎn)品專業(yè)代理商,產(chǎn)品包括各類激光器、光電調(diào)制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、光通訊、生物醫(yī)療、科學研究、國防、量子光學、生物顯微、物聯(lián)傳感、激光制造等;可為客戶提供完整的設備安裝,培訓,硬件開發(fā),軟件開發(fā),系統(tǒng)集成等服務。

昊量微信在線客服

昊量微信在線客服

版權(quán)所有 © 2024上海昊量光電設備有限公司 備案號:滬ICP備08102787號-3 技術(shù)支持:化工儀器網(wǎng) 管理登陸 Sitemap.xml